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Background 2

* Materials with negative refractive index have been shown to enable the
generation of an enhanced resolution image where both propagating and
non-propagating waves are employed [1],[2].

* Recent analysis of the imaging of a slab in a medium in the quasistatic
regime showed that the maximum concentration of electric field occurs not
at the geometric optics foci but at the interfaces between the negative
permittivity slab and the positive permittivity slabs [3],[4].

Goals

Method 3

We consider a two-constituent microstructure of a €4
slab in a €, medium

We assume u = 1 everywhere and solve the full Maxwell’s equations where ¢,
and €, can take any value. Electric dipole is situated at z = z,.

Region Il dipole

£, /I\at Z =z,

Assuming that all the EM fields are monochromatic Maxwell’s equations
become, in Gaussian units,

. . )
V- (E)=0, VXxE=—H,V-H=0, VxH=——¢E+ —1J.

C C C
We write

E(I‘) = 6191 (I‘) + 6292(1‘),

where 6;(r), i = 1,2, is a step function equal to 1 when r is inside the ¢;
constituent and equal to 0 elsewhere.

From these we can obtain the following equation for the local electric field

E(r):
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* Express the physical Electric field in terms of these eigenstates.

where p is the electric dipole moment.
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The last differential equation can be transformed into an integral equation
by using a tensor Green function Gag(r,r’, ks), defined by 5 o . The unit operator can be expanded in terms of those states and their duals
Using G (r — ', k) we can now “solve” Eq. (1) by treating its rhs as if it B.)(E,
Pt 2 127453 / r : no : - E,)(E,
—V x (Vx Q)+ k2 G= k215 (r — 1), [np = 6up were }{nown. In this way we get the following integral equation for the local The scalar product of two vector fields F(r), E(r) is now defined by i — Z SRS
electric field E(r): o (En|Ep)
with boundary conditions of an outgoing wave at large values of |z|.
E = Eo+ulk, (F|E) = /dV91 (r)F"(r) - E(r). We can now write the following formal solution of Eq. (1):
A Aare
: : I'E = aV'o.(x") G (r — 1’ ko) - E(r), . .
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